Hlavní obsah
Trigonometrie
Kurz: Trigonometrie > Kapitola 3
Lekce 2: Definice sinu, kosinu a tangenty pomocí jednotkové kružniceOpakování jednotkové kružnice
Opakování definice jednotkové kružnice goniometrických funkcí.
Jak funguje jednotková kružnice jako pomůcka pro funkce sinus a kosinus?
Jednotková kružnice je pomůcka, díky které dokážeme určit sinus a kosinus libovolného reálného čísla. Teď si ukážeme, jak to udělat pro obecný úhel theta:
- Začneme v bodě left parenthesis, 1, comma, 0, right parenthesis. Z tohoto bodu pojedeme po kružnici proti směru hodinových ručiček, dokud se úhel mezi kladnou částí x-ové osy a úsečkou, která spojuje naši pozici s počátkem souřadnic nerovná theta.
- sine, left parenthesis, theta, right parenthesis je roven y-ové souřadnici bodu, ve kterém se nacházíme, a cosine, left parenthesis, theta, right parenthesis je roven x-ové souřadnici.
Další trigonometrické funkce můžeme už snadno odvodit ze vzorečků, které propojují jednotlivé trigonometrické funkce.
Chceš se dozvědět více o jednotkové kružnici? Podívej se na toto video.
Dodatek: Všechny goniometrické funkce na jednotkové kružnici
Pomocí pohyblivého bodu uvidíš, jak se mění poměry v závislosti na úhlu.
Zkontroluj si, zda tomu rozumíš správně
Chceš se zapojit do diskuze?
Zatím žádné příspěvky.