If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:6:56

Transkript

Máme tady grafy přímek. A když se na ty grafy přímek podíváme, hned na první pohled vidíme, že jsou v něčem rozdílné, něčím se liší. Například o této přímce bychom mohli říct, že roste rychleji než ta modrá. Je prudší a to, jak je přímka strmá, jak rychle roste či klesá, je dost užitečná představa, která se nám bude do budoucna hodit. A my bychom byli rádi, kdybychom tuhle tu představu tento pojem, jak rychle přímka klesá či stoupá, mohli zapsat nějakým rozumným způsobem. Nějakým číslem. Jak si tedy představit, jak rychle přímka stoupá? Můžeme se podívat, o kolik přímka naroste směrem nahoru ve vertikálním směru při nějakém nárůstu horizontálním. Zapsat bychom to mohli tedy jako vertikální nárůst přímky ku nějakému horizontálnímu nárůstu přímky. Můžeme se na to teď podívat. Začneme třeba s tou červenou přímkou. Vybereme si nějaký jednoduchý bod tady třeba. Odsud. Když se tady posuneme v horizontálním směru doprava o jedna, o kolik se musíme posunout směrem nahoru ve vertikálním, abychom zase dorazili na přímku? O raz, dva, do tohoto bodu. Takže my jsme se tady posunuli o 1 doprava a o 2 nahoru ve vertikálním směru. Tedy kdybychom to napsali podle této představy nahoře, tak by to bylo vertikální nárůst je 2 a horizontální nárůst 1. Pojďme se podívat, jestli to bude takto fungovat po celé té přímce. Můžeme třeba jít odsud a půjdeme v horizontálním vodorovném směru raz, dva, tři. A kolik musíme ujít ve vertikálním směru? 1,2,3,4,5,6 a jsme zase na přímce. Tady jdeme o 3, tady jdeme o 6. Když si to zase dosadíme do tohoto vzorečku řekněme, tak vertikální nárůst je 6 a horizontální 3. Toto nám tedy udává, jak rychle přímka stoupá a my si všimnete že toto je to samé jako toto. Dvě jedniny, to je to samé jako šest třetin, to se rovná 2. Tomuto číslu, které nám vyjadřuje, jak rychle přímka stoupá a klesá, budeme říkat směrnice. Směrnice nám vyjadřuje, jaký sklon má přímka, jestli stoupá nebo klesá mírně či rychle. Zastupuje nám jednoduše sklon té přímky. A my si můžeme zapsat vzoreček, který se obvykle pro směrnici používá. Je to vlastně jenom přepis této obecné představy, kterou jsme si napsali na začátku. Takže místo vertikálního nárůstu, který se nám, jak si všimneme, děje podél osy y, pokud jdeme vertikálně - ve svislé směru. Tak my tady můžeme zapsat, že vertikální nárůst je vlastně změna y. O kolik se posuneme ve vertikálním směru směrem podél osy y. A horizontální nárůst, to už jste asi uhodli, je tentokrát ve vodorovném směru a tedy se bude jednat o změnu x. Změnu y a změnu x můžeme zapsat ještě takto. Takovýmto trojúhelníčkem. A tento trojúhelníček není nic jiného než řecké písmeno delta. Takže toto je delta a tedy směrnice je zadaná jako změna y ku změně x. Neboli delta y ku deltě x. Ještě jednou to zopakuji, vlastně nám to tedy udává, jak moc se změní y, když se o nějakou hodnotu změní x. Tak si to pojďme ukázat ještě i na té modré přímce. Když se nám například x změní o 2 směrem doprava naše delta x tady tedy bude 2, o kolik se nám změní y směrem nahoru? O raz, dva. Naše delta y je tady 2. A jak to bude vypadat s naší směrnicí pro tuto přímku? Naše směrnice bude tedy podle vzorečku delta y ku deltě x a tedy dva ku dvěma. To je rovná 1. Podíváme se, jestli to bude platit podél celé té přímky. Tady se posunu o jedna a tady zase o jedna. Jedna ku jedné je jedna. To samé například tady. Ale my nemusíme podél té přímky jenom stoupat. Můžeme se podívat, jak by to bylo kdybychom šli do minusu. Když půjdeme u x o jedna směrem do minusu u y také musíme jít o jedna směrem do minusu. Když půjdeme u x o 2 do minusu, u y musíme také jít O2 do minusu. A když si to dosadíme do vzorečku, například tady tento případ, zase nám vyjde stejné číslo. -2 ku -2 je opět 1. Vždycky dostaneme stejné číslo. Směrnice přímky je konstantní. Nemění se. Toto číslo nám navíc udává, že x a y vlastně stoupají či klesají stejnou rychlostí. Posuneme se o 2 u x, posuneme se o 2 y. Posuneme se o jedno u x, posuneme se o jedno u Y. Směrnice nám tedy udává sklon přímky. Jak moc je přímka prudká, jak rychle stoupá či klesá.