If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:6:33

Úvod do průsečíků přímky s osami x a y

Transkript

Máme lineární rovnici y = 1/2x - 3 A my bychom rádi sestrojili graf této rovnice. Grafem této rovnice, jelikož je to rovnice lineární, je přímka a ta přímka je tvořená všemi body, které vyhovují této rovnici všemi uspořádanými dvojicemi x a y, které jsou řešením této rovnice. A ten graf si stojíme tak, že si najdeme několik bodů, které vyhovují této rovnici a potom je propojíme v přímku. Nakreslíme si tabulku. Jako x si zvolíme nějaké jednoduché čísl,o se kterým se nám bude v této rovnici dobře počítat, začneme tím, že si za x zvolíme 0. x je 0 a tedy toto je nulové a y se tedy rovná -3. Dále si můžeme zvolit třeba číslo 2, poněvadž potom nám vyjde dvakrát jedna polovina je jedna minus tři to je minus dva. Poté si můžeme zvolit bod x se rovná čtyři a to jsou čtyři poloviny. To jsou dva minus tři se rovná minus jedna. Mohli bychom pokračovat dál a dál, ale k sestrojení přímky nám stačí dva body a my už máme tři. Tak. Za kreslímesi je do soustavy souřadnic 0 a -3, nula a minus tři tady. Dva a minus dva, dva a minus dva. A čtyři a minus jedna, čtyři a minus jedna a ta přímka, která jimi bude procházet, musíme si ji načrtnout co nejvíc přesně, bude vypadat asi takto. To je tedy graf naší lineárně rovnice y se rovná jedna polovina x minus tři a my bychom se teď rádi podívali na to, kde ta naše přímka protíná osy x a y. Jak je to s osou x? Osu x přímka protíná v tomto bodě a tomuto bodu budeme od teď říkat průsečík s osou x, protože protíná osu x. Tento bod má souřadnice z grafu 6 a 0 a důležité tady je to, že kdykoliv máme průsečík s osou x, tak leží někde na ose x a y-ová souřadnice je tedy vždy nulová. Máme-li průsečík s osou x, y je vždy nula. A jak jsme na tom s průsečíkem s osou y? Ten je tady, ten jsme si dokonce vypočítali a má souřadnice 0 a minus 3. To je náš průsečík s osou y. Fungovat to bude obdobně jako u průsečíku s osou x. Kdykoli máme průsečík s osou y, leží na ose y, a x-ová souřadnice je tedy vždy nulová. Průsečík s osou y x-ová souřadnice je nulová. Když už tedy víme, jak to funguje s průsečíky s osami x a y. Můžeme si je zkusit vypočítat pro nějakou další lineární rovnici, například 5x + 6y = 30. Tak se na to pojďme podívat. Když x bude 0. Toto bude 0 a zbyde nám 6y se rovná 30 a tedy y se rovná 5 když y bude nulové. Toto bude 0 a zbyde nám 5x se rovná 30 a x se tedy rovná 6. Nakreslíme si ty body do grafu 0 a 5, 0 a 5. A 6 a 0, 6 a 0. To je dokonce bod, který už jsme si naznačili před tím. A ta přímka bude vést nějak takto. Ještě si ji prodloužíme na druhou stranu. Tak toto je tedy graf lineární rovnice 5x plus 6y = 30. Průsečíky jsou tyto. Na ose x je to náš bod 6 a 0, který už jsme viděli předtím. Náš bod 6 a 0, y-ová souřadnice tedy nulová. A průsečík s osou y je bod 0 a 5. X-ová souřadnice u průsečíku s osou y opět nulová.