If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:5:30

Transkript

Máme tady graf nějaké funkce, y se rovná f(x) na intervalu od nuly až po nějakou kladnou hodnotu. A my bychom se rádi podívali na maxima a minima té funkce. Už víme, co to jsou globální maxima a minima funkce. To jsou body, ve kterých funkce nabývá nejvyšší hodnoty a nejnižší hodnoty. Když se podíváme na tu naši funkci, tak vidíme, že globální maximum máme hned na začátku. Tady v nějakém bodě A, který je pravděpodobně 0, takže globální maximum nastává tady, v bodě A, a je to f(A) a globální minimum máme tady, zase na konci funkce v nějakém bodě, řekněme B, a globální minimum je tedy v bodě B, f v bodě B, to už umíme. Ale tohle to, tyto dva body A a B nejsou jediné zajímavé body tady v této funkci. Když se podíváme, tak objevíme třeba tady nějaký bod C, v bodě C funkce rozhodně nenabývá nejvyšší hodnoty na celém intervalu té funkce, ale rozhodně nabývá vyšší hodnoty než ve všech bodech okolo. Tvoří to tedy takový kopeček tady s bodem C na vrcholu. Takže v bodě C nabývá ta funkce nejvyšší hodnoty, řekněme lokálně, v určité oblasti. A proto tady tomuto, té hodnotě v tom bodě C, tady f(C), budeme říkat lokální maximum, protože je to maximum v určité oblasti, lokálně, a obdobně, když se podíváme třeba tady, tak tady je nějaký bod, někde zhruba tady, řekněme třeba D. A my vidíme, že v bodě D ta funkce nabývá menších hodnot než všude okolo. Máme tady takovou prohlubeň, takže f v bodě D, někde zhruba tady, tak tomu budeme říkat lokální minimum, protože hodnota v tomto bodě je nižší než hodnota ve všech okolních bodech. Teď jsme si to řekli tak hezky neformálně, ale takhle to asi nemůžeme zadefinovat matematicky. Takže si to pojďme teď hezky matematicky zadefinovat, jak už jsme zvyklí. Začneme s lokálním maximem. My můžeme říct, že f(C) je lokální maximum. Pokud f(C), a teď opravdu jenom zapisuji to, co jsme si řekli, do matematického zápisu, nebojte se, hned si to vysvětlíme. Pokud f(C) je větší nebo rovno než f(x) a teď pro všechna x, teď bychom asi chtěli říct pro všechna x poblíž nebo v blízkosti, v okolí C. Ale to by bylo opět poněkud nematematické a nepřesné. Takže to definujeme takto, pro všechna x v otevřeném intervalu od C minus epsilon do C plus epsilon pro epsilon větší než nula. Máme tady tedy nějaké okolí, tomu říkáme epsilonové okolí. Ale to vůbec neřešíte. Máme tady nějaké okolí bodu C, C minus nějaká hodnota větší než nula a C plus nějaká hodnota větší než nula v otevřeném intervalu. A na tomto intervalu, tedy v bodě C, nabývá ta funkce nejvyšší hodnoty. Když se tady podíváme, těch otevřených intervalů kolem bodu C bude spousta. Nám stačí najít jeden. Takže se můžeme podívat, že tady, například tady, když si vezmeme toto okolí, tady bude vlastně C minus epsilon a tady bude C plus epsilon, tak v tomto okolí opravdu v bodě c nabývá funkce nejvyšší hodnoty. Takže je to lokální maximum a vy už teď určitě víte, jak nadefinovat lokální minimum. Ale pojďme si to tady zapsat. V našem případě to tady bude, f v bodě D je lokální minimum. A opět obdobně, pokud f(D), neboli funkční hodnota v bodě D, je menší nebo rovna tentokrát než funkční hodnota v bodě x, pro všechna x v nějakém okolí, všechna x náležející do otevřeného intervalu D minus epsilon až po D plus epsilon, pro epsilon větší než nula. Takže zase máme nějaký otevřený interval, do kterého spadá i ten bod D. Třeba tady, já už to nebudu vypisovat, tady na tomto intervalu a vidíme, že na tomto intervalu opravdu funkční hodnota v bodě D je nižší než funkční hodnoty ve všech ostatních bodech. Teď jsme si to hezky nadefinovali, ale pojďme si to ještě tak lidsky shrnout. Lokální maximum v nějakém bodě nastává, když funkce v tomto bodě nabývá větší hodnoty než ve všech bodech v nějakém okolí toho bodu. Takže lokální maximum v bodě C je tehdy, když hodnota v tom bodě C je vyšší než ve všech bodech v nějakém okolí C a v tomto případě f v bodě D je lokální minimum, když ta funkce v tom bodě D nabývá menší hodnoty než ve všech bodech okolo D. A pro dnešek by asi už stačilo.