If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:9:36

Transkript

Dnes si řekneme něco o intervalech a jak je matematicky zapsat. Máme tady číselné osy, které nám vyjadřují nějaké hodnoty x. A my si na tom ukážeme, jak můžeme takový interval znázornit na číselné ose a pak se pokusíme si ho zapsat matematicky. Co kdybych třeba chtěla interval od -3 po +2. Pro přesnost, když už si určuji interval, tak musím ještě dodat, jestli ty krajní body do toho intervalu chci zahrnout nebo ne. Jestli to -3 a +2 bude do toho intervalu patřit, nebo nebude. Pojďme to prvně udělat tak, že ty krajní body tam patřit budou. Takovému intervalu říkáme interval uzavřený. Na číselné ose to označíme tak, že u těch dvou krajních bodů uděláme takové plné kolečko. Bude to takový plný bod. Říkali jsme -3 a 2. A teď samozřejmě musíme ještě zdůraznit, že se jedná o celý interval, ne jenom o ty dva body. Já to udělám několikrát, ať to vidíte, o jaký interval se tedy jedná. Jde jenom o tu barvu. Graficky znázorněné máme. Jak bychom to tedy zapsali matematicky? Vás už možná napadne jeden způsob, který už známe dávno, že by se to dalo zapsat třeba takto: -3 je menší nebo rovno x. A to je menší nebo rovno +2. To určitě znáte tento způsob zápisu a máme tady menší nebo rovno, protože to x se může rovnat -3 a může se také rovnat 2. Rozhodli jsme se, že ty krajní body intervalu do toho intervalu patřit budou, že je tam zahrneme. A druhým způsobem, který bude asi nový, je to, že to můžeme zapsat takto. Prvně napíšu a potom vysvětlím od -3 po 2. Toto nám znázorňuje interval od -3 po 2, mezi čísly máme ideálně středník, aby se nám to nepletlo s desetinnou čárkou, kdyby tam byla čárka. A když máme uzavřený interval a ty krajní body tam patřit budou, tak používáme takovéto lomené závorky. Kdybychom chtěli být ještě hodně matematicky přesní a formální, tak tyto dva zápisy můžeme ještě trošku rozšířit a můžeme to napsat takto. Toto znamená, že x je prvkem množiny reálných čísel a budou to taková x, že -3 je menší než nebo rovno x a to je menší nebo rovno 2. A tady ty složené závorky nám vyjadřují, že se jedná o množinu. Obdobně to můžeme napsat i tady. Opět x je prvkem množiny reálných čísel nebo x jsou reálná čísla taková, že x náleží do intervalu od -3 po 2 a ten interval je uzavřený. Krajní body tam patří, takže tu máme několik způsobů, jak zapsat jeden a ten stejný interval. A jak by to vypadalo, kdybychom se rozhodli ty krajní body do intervalu nezahrnout? Pojďme tedy na další příklad. A to už se nebude jmenovat interval uzavřený ale interval otevřený. Vybereme si nějaký jiný interval, třeba interval od -1 po +4 a řekli jsme, že ty krajní body tam nechceme zahrnout, nebudou tam patřit, takže u nich neuděláme takové plné kolečko, ale kolečko prázdné, nevyplněné. Nějak takto. A samozřejmě si opět vyznačíme, že se jedná o celý interval. Tak ať je to hezky vidět. Do tohoto intervalu bude ještě stále patří třeba -0,9999 ale -1 už ne. Stejně tak tam bude patřit 3,99999 ale 4 už ne. A jak to zapíšeme? Bude to vypadat dost obdobně. Už to rovnou budeme psát i pomocí tohoto formálního matematického zápisu. Takže začneme zase stejně. x jsou taková reálná čísla, kdy... A teď použijeme stejný zápis nebo trošku upravíme,... -1 je menší, ostře menší, než x, které je menší než 4. Tentokrát nemáme menší nebo rovno, poněvadž -1 ani 4 tam nepatří, x nemůže být rovno -1 ani +4, takže máme ostré nerovnosti. Můžeme to vyjádřit i druhým způsobem. Zase x patří do množiny reálných čísel a budou to taková x, která náleží do intervalu. A teď, my tam ty krajní body nechceme, takže nepoužijeme tyto lomené závorky ale závorky kulaté. Takže x náleží do intervalu od -1 po +4. Opět středník. A ty kulaté závorky nám vyjadřují, že ty krajní body tam patřit nebudou. Teď jsme si to vysvětlili, ale vás možná napadne: Je tady možnost, že bych mohl zapsat interval, kdy jeden krajní bod tam patří a ten druhý nepatří? Určitě. Pojďme si to ukázat. Necháme si tady ten jeden zápis, ať na to hezky vidíme, teď bychom třeba chtěli nějaký interval, kdy jeden krajní bod tam patří a jeden ne. Já to prvně zapíšu a potom si to nakreslíme. Půjdeme opačným směrem tentokrát. Třeba x budou taková reálná čísla, kdy -4 je menší než x a to je menší nebo rovno -1. Takže my vidíme, že -4 jako krajní bod do toho intervalu nebude patřit, protože tady je menší a -1 tam patřit bude, protože tady je menší nebo rovno. Tak si pojďme prvně zakreslit ty krajní body. -4, jak už jsme řekli, tam patřit nebude, takže to bude prázdné kolečko a -1 tam patřit bude, takže to bude plné kolečko. A ještě vyznačíme celý ten interval. Výborně a kdybychom chtěli zopakovat ten druhý zápis, tak ten bude vypadat jak? x jsou taková reálná čísla, která náleží do intervalu ... a teď pozor. -4 tam nepatří takže tady bude mít kulatou závorku, středník -1, ale -1 do toho intervalu patří, takže tady na konci bude lomená závorka takto. Podle toho poznáme, že -4 do toho intervalu nepatří a -1 naopak ano. A pojďme se podívat na poslední příklad. Co kdybychom třeba chtěli interval, který obsahuje všechna reálná čísla kromě jednoho jediného konkrétního. Třeba kdybychom chtěli všechna reálná čísla kromě čísla 1. Takže řekli jsme kromě čísla jedna. Takže si na té ose u 1 uděláme prázdné kolečko a zbytek si vyznačíme graficky. Je to jednoduché. Ale jak bychom to zapsali? Na to máme zase několik způsobů. Asi takový nejjednodušší a nejsrozumitelnější na první pohled by mohl být tento. Opět začátek stejný, x jsou reálná čísla taková, že x se nebude rovnat jedné. Jednoduchý krátký zápis, ze kterého je hned vidět, že x budou všechna reálná čísla kromě +1. Krátké a jednoduché. Ale kdybychom chtěli nějaký složitější zápis máme tady i takové. Co třeba tohle. x patří do množiny reálných čísel a budou to taková x, kdy x je menší než 1 nebo x je větší než jedna. Což vidíme hezky vlastně tady na té ose, že x je menší nebo 1, nebo x je větší nebo 1. I takto se to dá zapsat. A máme ještě jeden delší zápis pro fajnšmekry, který se dá zapsat takto: x budou taková reálná čísla, která buď náleží do intervalu minus nekonečno až 1 nebo náleží do intervalu 1 až plus nekonečno. Takhle. Takže teď si trošku ten dlouhý zápis rozebereme. U 1 vidíme, že je tam kulatá závorka, to je nám jasné, neboť 1 do toho intervalu patřít nemá. U minus nekonečna a plus nekonečna bude kulatá závorka vždycky, protože nekonečno není nějaké určité číslo. My bereme všechno do nekonečna, které stále pokračuje. Takže my všechno do toho nekonečna zahrnout nemůžeme. Takže to minus nekonečno a plus nekonečno nikdy do toho intervalu "patřit nebude", takže tam vždycky bude kulatá závorka a já myslím, že už by to pro dnešek stačilo. Už toho bylo docela dost.