If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:1:10

Řešený příklad: Intervaly, na kterých je funkce kladná, nebo záporná

Transkript

Projdeme si společně pár cvičení na určování intervalů, ve kterých je funkce kladná a záporná. Takže tady máme funkci g(x). A máme z nabídky vybrat interval, na kterém je funkce g záporná. Rychle si zopakujeme, co to znamená, když je funkce kladná a záporná. Když je kladná, tak je funkční hodnota v těch bodech té funkce na tom intervalu, kde je kladná, vyšší než nula, a tedy jednoduše řečeno, když se podíváme do grafu, tak se funkce nachází nad osou x. Když je funkce záporná, naopak, tak je funkční hodnota nižší než 0 a na grafu hezky vidíme, že se funkce nachází pod osou x, kde je funkční hodnota záporná. My máme vybrat interval, na kterém je funkce g záporná a tedy leží pod osou x. Jak už jsme si teď řekli. První možnost je tady od dvou do tří, že x je větší než 2 a menší než 3, tak to je tento interval a my vidíme že opravdu je funkce pod osou x, že ta funkční hodnota se nám pohybuje někde od nuly do minus čtyř, takže to by měla být správná odpověď. Ale projděme si ještě ty další možnosti. Mezi třemi a čtyřmi. To je tady, ale funkce nám už přelezla osu x a stále stoupá. Takže funkční hodnota už je v plusu a tedy rozhodně není funkce záporná. A ještě tady máme poslední možnost. Mezi čtyřmi a pěti. To je tady a stále vidíme, že funkce nám roste stále do vyšších funkčních hodnot a rozhodně do kladných. Takže ta funkce je na tomto intervalu kladná, takže správně je ta první odpověď. Zkontrolujeme. Výborně. Dáme si další. Máme vybrat interval tentokrát, na kterém je funkce h kladná. Máme tady funkci h(x) a když je kladná, tak jsou ty funkční hodnoty vyšší než nula a tedy se na grafu funkce nachází nad osou x. První možnost od minus čtyř do minus tří, když máme x od mínus čtyř do minus tří. Tady. A my vidíme, že funkce je pod osou x, funkční hodnoty se pohybují v záporných číslech, takže to je špatná odpověď. Druhá možnost od minus dvou do nuly, od minus dvou do nuly. To je tady tato část, ale funkce je stále pod osou x, stále v záporných funkčních hodnotách. Takže zase není kladná, tak snad bude ta třetí možnost správně. Od dvou do tří, když je x větší než 2 a menší než 3. To je tento interval a my jasně vidíme, že tady je funkce nad osou x a je tedy v tomto intervalu kladná. Takže vybereme tu poslední odpověď. Zkontrolujeme. Výborně. A dáme si ještě tu poslední. Funkce h(x). Z nabídky vyber interval, na kterém platí, že h(x) je menší než nula, tedy funkční hodnota na tomto intervalu bude vždy nižší než 0. Takže, ještě si to přeložíme, najděte interval, na kterém je ta funkce h záporná. Máme tady od minus tři a půl do minus dva a půl. To je někde tady. Tady ale vidíme, že tady je funkce nad osou x a je kladná, pohybuje se v kladných funkčních hodnotách. H(x) je tam větší než nula, takže to nám nesedí do zadání od minus dvou do minus jedné. Od minus dvou do minus jedné. Vidíme, že funkce je tady, a tedy hodnota funkční je v záporných číslech takže h(x) je opravdu na tomto intervalu menší než nula. To by mělo sedět. Od 2 a půl do tři a půl. To je někde tady. Takže ta funkce je nad osou x. H(x) je větší než nula, takže to opět nesedí. Takže správně je ta druhá možnost. Už si to jenom zkontrolujeme a máme to zase správně.