If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:4:25

Určování definičního oboru funkce: příklady

Transkript

Dnes se podíváme na pár příkladů funkcí a pokusíme se určit jejich definiční obory. Než začneme, tak si zopakujeme krátce, co to ten definiční obor vlastně je. Definiční obor určité funkce obsahuje všechny hodnoty x, pro které je daná funkce definovaná. Neboli když tyto hodnoty x vložíme do funkce, tak dostaneme nějaký definovaný výstup. A pojďme se na to podívat teď prakticky. Máme tady funkci f(x), která je rovna x + 5 lomeno x - 2. Zastavte si to video a zkuste si to vypočítat sami. A my se teď do toho dáme společně. Máme tady funkci x + 5 lomeno x - 2. Pro jaké hodnoty bude tento výraz nedefinovaný? My už dávno víme, že nesmíme dělit nulou. Také víme, že když máme zlomek, tak jmenovatel nesmí být nulový, jinak bychom potom dělili nulou a to není definované. Víme že x - 2 se nesmí v tomto případě rovnat 0. Takže můžeme napsat, že definiční obor funkce f(x) budou všechna reálná x taková, že... Jak jsme už řekli, x - 2 se nebude rovnat 0 a my bychom to ještě rádi upravili. Ať to je hezky vidět na první dobrou. Takže přičteme 2 k oběma stranám rovnice. x se nesmí rovnat 2. Takže to budou všechna reálná x taková, že x se nebude rovnat 2. To by byla funkce f(x). Pojďme se podívat na funkci g(x). g(x) je rovno odmocnina z x - 7. Začít můžeme stejně. To si můžeme předepsat, že definičním oborem budou všechna reálná x taková, že... Máme tady nějaké omezení? Určitě máme, poněvadž tady máme odmocninu. Odmocnina v reálných číslech je definovaná pouze pro nezáporné hodnoty. Kdybychom měli pod odmocninou tady zápornou hodnotu, tak to neumíme spočítat, poněvadž v reálných číslech záporné číslo neodmocníme. Takže my víme, že v tomto případě tady musí být nezáporná hodnota, tedy že x - 7 musí být větší nebo rovno 0. Opět si to jenom lehce upravíme. Přičteme 7, x bude větší nebo rovno 7. Takže definiční obor u této funkce budou všechna reálná x taková, že x bude větší nebo rovno sedmi. A podíváme se na poslední funkci. Funkce h(x) je rovna y - 5 to celé na druhou. Začátek máme stejný, definiční obor budou všechna reálná x. A jak budeme pokračovat? Jaké tady máme omezení? Když se na to blíže podíváte, zjistíte, že vlastně tady žádná omezení na x nemáme. Jelikož cokoli, co umocníme na druhou, bude opět reálné číslo. V reálných číslech můžeme cokoli dosadit tady do tohoto a umocnit na druhou, a dostaneme opět reálné číslo. x - 5 tedy může být jakákoli hodnota a tím pádem i x může nabývat jakékoli hodnoty. Takže definiční obor v tomto případě budou všechna reálná x. Za x můžeme dosadit jakékoli reálné číslo, na rozdíl od prvních dvou funkcí, kdy jsme vždy měli nějaké omezení, tak tady je definičním oborem celá množina reálných čísel.