If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah

Transkript

Máme tady dvě tabulky hodnot x a y, nějaké dva vztahy x a y, nějaké závislosti. A my se máme rozhodnout, zda se vždy jedná o závislost lineární nebo exponenciální anebo ani o jednu z těchto dvou možností. To video si zastavte a zkuste si to vyřešit sami. A my teď na to půjdeme společně. Vždycky se musíme podívat, jak to vlastně vypadá, jestli když máme nějakou danou konstantní změnu x, tady třeba vidíme, že se bude x měnit vždy o tři ty hodnoty u x, tak jestli se y-ové hodnoty také mění o nějakou konstantní hodnotu, tedy jestli rozdíl mezi po sobě jdoucích y -ovými hodnotami je vždy stejný. V tom případě by se jednalo o závislost lineární anebo jestli pro danou konstantní změnu x je podíl po sobě jdoucích y -ových hodnot vždy stejný, tedy ještě jinak řečeno, jestli mezi těmi po sobě jdoucími y-ovými hodnotami násobíme stejným číslem. V tom případě to bude závislost exponenciální. Tak se na to pojďme podívat. Tady vidíme, že se nám x vždycky mění o + 3, takže tu máme nějakou danou konstantní změnu x. A podíváme se, jak je na tom y. Tady jdeme o plus 7. Tady jdeme taky o +7, to vypadá nadějně. A tady je to taky o +7. Takže jak už jsme řekli, pro nějakou konstantní změnu x máme konstantní změnu y, hodnoty se nám mění o nějakou danou hodnotu. Rozdíl mezi po sobě jdoucími hodnotami je stejný, vždycky je to 7. Takže vidíme, že se jedná o lineární závislost, lineární. Kdybychom si tyto hodnoty zanesli do grafu, vytvořily by nám přímku, mohli bychom klidně spočítat i směrnici, protože tady máme konstantní poměr změny y ke změně x. Jedná se o závislost lineární. Možná ten druhý případ. Tady vidíme, že máme zase nějakou danou změnu x vždy o plus jedna, konstantní. A jak to bude vypadat tady u těch y-ových hodnot. Tady jde o +2. Tady už ale jedeme o +6 a tady dokonce o + 18. Takže to rozhodně nebude lineární závislost. Ale pojďme ještě ověřit, jestli se jedná o závislost exponenciální. Takže ještě jednou, u exponenciální závislosti je podíl po sobě jdoucích y-ových hodnot vždy stejný. Neboli násobíme mezi nimi stejnou hodnotou. Takže se pojďme podívat. Jedna krát co jsou tři? Jedna krát tři jsou tři. Tři krát co je 9? 3 krát 3, 9. A 9 krát co je 27? 9 krát tři je 27. Kdybychom se chtěli podívat na ty podíly, tak tady máme vlastně jedna děleno třemi, tedy jedna třetina. Tři děleno devíti, tak to je to samé, opět zase jako jedna třetina a 9 dělelo na dvaceti sedmi, tak to je zase to samé. Když to vykrátíme devíti. Zase jedna třetina. Takže vidíme, že násobíme stejnou hodnotou, podíl po sobě jdoucích y-nových hodnot je stejný. Takže se jedná o závislost exponenciální.