If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:6:17

Transkript

Máme funkci f(x), která je rovna x lomeno (1 minus kosinus z (x minus 2)), a máme vybrat správný popis jednostranných limit funkce f(x) v bodě x rovno 2. Vidíme, že pro x rovno 2… Pokud se pokusíme vyčíslit f(2), dostaneme 2 lomeno (1 minus kosinus z (2 minus 2)), což je totéž jako kosinus z 0 a kosinus z 0 je jednoduše 1 a 1 minus 1 je 0. Tato funkce tak v bodě x rovno 2 není definovaná. Proto je zajímavé se kouknout na limitu pro x blížící se právě ke 2, zejména na jednostranné limity. A jednostranné limity… Zkusme to tedy nějak vyřešit. Je několik možností, jak to udělat. Lze to vyřešit bez kalkulačky pouze vyšetřením toho, co se zde děje, a zamyšlením se nad vlastnostmi funkce kosinus. Pokud vás to nakoplo, zastavte si video, zkuste najít řešení a já to pak ukážu na konci tohoto videa. Jiné řešení, a to s kalkulačkou, je udělat si menší tabulku, jako jsme to dělali v jiných příkladech. Když nás zajímá x blížící se ke 2 zprava, tak si můžeme udělat tabulku, do které si napíšeme x a vedle f(x). A jelikož se blížíme od hodnot větších než 2, tak můžeme použít 2,1, 2,01. Mluvil jsem o kalkulačkách, protože není jednoduché funkci vyčíslit, protože toto je 2,1 lomeno (1 minus kosinus z (2,1 minus 2)), a 2,1 minus 2 je 0,1. Bez kalkulačky nevím, kolik je kosinus z 0,1. Vím, že kosinus z 0 je 1, takže toto bude velmi blízko 1 a menší než 1. Kosinus není nikdy větší než 1. Kosinus je omezený, protože -1 je menší nebo rovno kosinu z x... Napíšu jen x, nepotřebuji závorky. ...a to je menší nebo rovno 1. Kosinus pouze kmitá mezi těmito dvěma hodnotami. Tento kosinus se tedy bude blížit k 1 a bude menší než 1. Rozhodně nebude větší než 1. To je dobré pozorování, které nám může pomoci lépe porozumět chování výrazu. A pak můžeme říct: „Dobře, 2,01… To bude 2,01 lomeno (1 minus kosinus z 0,01), a tento kosinus bude ještě blíže k 1, ale bude stále menší než 1.“ Ať se děje cokoli, tak kosinus je vždy mezi -1 a 1, přičemž se jim může rovnat. Ale jak se blížíme ke 2, tak se tento kosinus bude blížit k 1. Asi bychom mohli říct, že se to blíží k 1 zespoda. Takže už získáváme nějakou představu. Pokud se kosinus blíží k 1 zespoda, tak celý tento výraz bude kladný, a jak se blížíme k x rovno 2, tak čitatel je kladný, blíží se ke 2. Jmenovatel je kladný, tedy celý výraz se blíží ke kladné hodnotě, nebo bude neomezený v kladném směru, jak brzy uvidíme. Výraz je neomezený, jelikož tento kosinus je ještě blíže k 1 než tento kosinus. To bychom viděli, pokud bychom měli kalkulačku. Ale toto je opravdu neomezené v kladném směru, takže se to blíží ke kladnému nekonečnu, a to říkají tyto dvě možnosti. Totéž můžeme provést, když se x blíží zleva. Pro x blížící se ke 2 zespoda bych mohl říci. Takže tady je x, tady bude f(x), a opět nemám kalkulačku, ale vy si to můžete spočítat na kalkulačce a uvidíte že vychází kladná čísla a že jak se dostáváme blíže ke 2, tak jde o čím dál tím větší kladná čísla. A stejná věc se stane pro 1,9 a 1,99, protože zde bude 1,9 lomeno (1 minus kosinus… Teď zde máme 1,9 minus 2, což je -0,1. Uděláme si tu místo. Druhý by byl 1,99 lomeno (1 minus kosinus -0,01). A kosinus z -0,1 je stejný jako kosinus z 0,1. Kosinus z -0,01 je stejný jako kosinus 0,01. Tyto dva kosiny jsou si tedy rovny. Tenhle bude roven tomuto. A znovu se budeme blížit ke kladnému nekonečnu, tedy jediná možnost, která nám zbyla, je ta úplně první. Ať už se ke 2 blížíme zprava nebo zleva, tak se budeme blížit ke kladnému nekonečnu. Také bychom si mohli říct, že když se blížíme ke 2, čitatel je kladný, protože 2 je kladné číslo, a tohle je pro x blížící se ke 2 kosinus něčeho, a to nebude nikdy větší než 1. Bude se blížit k 1, ale bude to vždy menší než 1, takže když je tohle pro x jdoucí ke 2 menší než 1 a je to rovno 1, když se x rovná 2, pak tohle je 1 minus něco menšího než 1, takže to bude kladné. Máme kladné číslo dělené kladným číslem, tudíž když se blížíme ke 2, rozhodně dostaneme něco kladného. A díky možnostem, které nám dali, už víme, že limity budou nevlastní, takže bychom tak vybrali tuto možnost. Taky by nám to však mělo dávat smysl. Čím jsme ke 2 blíž, tím je tato hodnota blíž k 0. A čím je tato hodnota blíž k 0, tím je kosinus blíž k 1. Čím je kosinus blíž k 1, tím je jmenovatel menší. A když dělíme menším a menším jmenovatelem, tak se hodnota výrazu neomezeně zvětšuje a jde k nekonečnu. A to je přesně to, co říká první nabízená možnost.