Hlavní obsah
Diferenciální počet
Kurz: Diferenciální počet > Kapitola 3
Lekce 3: Derivace implicitních funkcíDerivace implicitních funkcí
Některé vztahy mezi proměnnými nelze vyjádřit explicitně funkcí. Například x²+y²=1. Derivace implicitní funkce nám pomůže najít dy/dx takto určených vztahů. Dělá se pomocí vzorce pro derivaci složené funkce, přičemž na y nahlížíme jako na funkci proměnné x. Pomocí vzorce pro derivaci složené funkce je tak například derivace y² rovna 2y⋅(dy/dx). Tvůrce: Sal Khan.
Chceš se zapojit do diskuze?
Zatím žádné příspěvky.
Transkript
Máme zadanou rovnici, či spíše vztah:
x na druhou plus y na druhou rovná se 1. Po zakreslení všech bodů, co tomuto vztahu
odpovídají, dostanu jednotkovou kružnici. V tomto videu si ukážeme, jak určit sklon
tečny v libovolném bodě na této kružnici. Možná vás napadlo, že taková kružnice není
grafem funkce, každému x odpovídají dvě y. Instinkt by nám mohl radit rozdělit
kružnici na dvě oddělené funkce: y by se rovnalo kladné odmocnině
z jedné minus x na druhou, a y by se rovnalo záporné
odmocnině z jedné minus x na druhou, obě bychom odděleně zderivovali, a dostali
tak sklony obou tečen pro jakékoli x. Dnes si však ukážeme, jak derivaci nepřímo
provést pomocí pravidla o složené funkci, abych nemusel takto přímo
definovat dvě oddělené funkce. Uděláme to, že zderivujeme obě strany
a použijeme pravidlo o složené funkci. A jelikož přímo nedefinujeme funkci f(x) a
nehledáme derivaci z f(x), této aplikaci pravidla o složené
funkci říkáme implicitní derivace. Jen mějte napříč celým videem na paměti,
že je to použití pravidla o složené funkci. Pojďme zderivovat obě strany. Levá strana je derivace x na druhou
plus y na druhou, podle x. To se bude rovnat derivaci pravé strany,
což je 1, podle x tak jako nalevo. Derivovat součet těchto dvou proměnných
je to stejné jako sčítat jejich derivace, Takže tohle je derivace x druhou plus
derivace y na druhou, obojí podle x. Když derivuji 1 podle x,
nemění se, zůstává konstantní. Takže derivace bude 0. Tady první sčítanec jsme viděli mnohokrát,
rovná se to 2x na prvou. Druhý sčítanec je zajímavější. Derivace y na
druhou podle x. Hlavní je si uvědomit, že tady můžeme
uplatnit pravidlo o složené funkci. Počítáme derivaci výrazu podle x,
což je podle pravidla o složené funkci: derivace y na druhou podle y,
mocninu můžeme brát jako funkci, krát derivace y
podle x. Předpokládáme, že y není konstanta,
že se jeho hodnota s x mění. Takže derivujeme y na druhou podle y
podle pravidla o složené funkci. Derivaci y na druhou podle y
násobíme derivací y podle x. Pro lepší představu vnímejte tohle jako
derivaci funkce y(x) podle x. Nebo lépe, y(x) na druhou,
což už máme napsané tady. Tenhle zápis lépe sedí do
pravidla o složené funkci. Derivace výrazu na druhou podle tohoto
výrazu krát derivace výrazu podle x. Opakuji to pořád dokola, tohle není
nic jiného než pravidlo o složené funkci. Pojďme to spočítat, co
máme na pravé straně? Derivace y na druhou podle
y se bude rovnat 2y. A hodnotu derivace y podle x ještě
neznáme, takže to sem prostě opíšu. Přepíšu to sem. Máme 2x plus derivaci y na druhou
podle y, což bude 2y, krát derivace y podle x,
a to celé se bude rovnat 0. Dostali jsme se k rovnici, jež má v sobě
zakomponovanou derivaci y podle x. To je přesně to, co chceme, tato část
vyjadřuje sklon tečny v libovolném bodě. Teď už jen zbývá vyřešit
naši rovnici, jdeme na to. Jen to celé překopíruji sem doprava,
abychom měli výpočet na jedné straně. Odečtu od obou stran 2x, takže derivace y
podle x krát 2y se rovná minus 2x. A abychom spočítali hodnotu naší
derivace, vydělíme obě strany 2y, Získáme, že se derivace y podle x rovná
minus x lomeno y, dvojka se nám vykrátí. Tohle je zajímavé, nemuseli jsme
definovat dvě různé funkce y, hodnotu derivace máme určenou nejen
ve vztahu k x, ale zároveň také k y. Co to ale znamená? Inu, pokud bychom chtěli najít
derivaci třeba v tomto bodě... Pokud je zde úhel 45°, bude bod [odmocnina
z 2 lomeno 2 ; odmocnina z 2 lomeno 2], jaký je tu sklon tečny? Víme, že se bude rovnat minus x, což
je minus odmocnina z 2 lomeno 2, lomeno y, což je
odmocnina z 2 lomeno 2. Sklon se rovná −1,
což odpovídá i grafu.