If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:3:50

Transkript

Máme tady načrtnutou kružnici a máme najít souřadnice středu této kružnice. Máme ještě řečeno, že na kružnici leží bod minus pět a minus devět. A máme na základě této informace spočítat poloměr té kružnice. Tak pojďme na to. Souřadnice středu, to můžeme odhadnout vizuálně. Z grafu vidíme, že střed je určitě tady. To je náš střed kružnice. A má souřadnice minus čtyři a minus 7. Tak to bylo jednoduché, minus čtyři a minus sedm. Teď nám ještě říkají, že na kružnici leží bod minus pět a minus devět. Tomu je opravdu tak. Minus pět a minus devět. To je tento bod, tady. Jaký je její poloměr? Jaký je poloměr té kružnice? Hledáme vlastně tady toto r. Jak to spočítáme? Jednoduše. Poloměr je vlastně vzdálenost mezi středem kružnice a jakýmkoli bodem na kružnici. To je vlastně nejtypičtější definice kružnice, že to je množina bodů se stejnou danou vzdáleností od středu kružnice. Takže vzdálenost dvou bodů, to známe. Na to se používá Pythagorova věta, protože my si tady představíme pravoúhlý trojúhelník. Toto bude naše změna x, o kolik se posuneme u x, tedy delta x, a tady bude naše změna y, o kolik se mezi těmi dvěma body posuneme podél osy y. A my už dávno známe Pythagorovu větu: c na druhou se rovná a na druhu plus b na druhou, tedy že druhá mocnina délky přepony se rovná součtu druhých mocnin délek odvěsen. Takto. Když si to napíšu tady, r na druhou se bude rovnat změně x na druhou mezi těmi dvěma body, delta x na druhou plus delta y, změna y na druhou mezi těmi dvěma body. Takže kolik je naše změna x? Mohli bychom to odhadnout tady i vizuálně, ale pojďme to spočítat z těch bodů. Takže změna x, delta x, je jedno, který bod vezmeme jako počáteční a který jako koncový, ale musíme dodržet pořadí i u té druhé souřadnice. Tak tohle bude třeba koncový, tohle počáteční, takže minus pět minus minus čtyři, minus pět minus minus čtyři, to je minus jedna. Delta y, změna y, taky to tu vidíme, minus devět minus minus 7, minus 9 minus minus 7, to je minus 2. Kdybychom šli opačným směrem, dostaneme opačná znaménka, ale tady se nám to umocní na druhou, takže to je úplně jedno. A kdybychom si to chtěli tady ještě formálně upravit, tak tady vlastně můžeme říct, že délky těch stran toho trojúhelníku jsou vlastně absolutní hodnoty těch změn x a změn y, délka strany musí být vždy kladná. Takže to doplníme a dopočítáme, r na druhou bude rovno minus jedna na druhou, to je jedna, plus delta y na druhou, minus dva na druhou, to je čtyři. Takže r na druhou je rovno pěti a r je tedy odmocnina z pěti, což dává smysl, protože to bude něco málo přes dva, a vidíme, že tady to i graficky opravdu tak je. A máme hotovo.