If you're seeing this message, it means we're having trouble loading external resources on our website.

Pokud používáš webový filtr, ujisti se, že domény: *.kastatic.org and *.kasandbox.org jsou vyloučeny z filtrování.

Hlavní obsah
Aktuální čas:0:00Celková doba trvání:3:25

Transkript

Díky, že tu pořád jste. Vím, že tahle diskuze začíná být docela technická, ale konečně máme všechny nástroje potřebné k dokončení odvození vzorce dotykového bodu na parabole. Než ale budeme pokračovat, trochu se vrátíme a připomeneme si, proč to děláme. Potřebujeme ten vzorec dotykového bodu, abychom scény jako je tato v Rebelce mohli vytvořit opravdu efektivně. Protože tento dotykový bod nám umožní napsat počítačové programy k nakreslení každého stébla trávy, aniž bychom museli kreslit každé jednotlivé vlákno po jednom. Abychom vytvořili vzorce, pojďme znova vše pojmenovat. Tahle světle fialová linka je řízena parametrem t, tento bod označím jako Q, a tento bod jako R, jako předtím. Tmavě fialová linka je řízena parametrem S, takže tento bod nazveme Q s čárkou, a tento bod R s čárkou. Teď si zapíšeme několik věcí, které známe. Víme, že Q je zlomek t podél úsečky AB, což znamená, že můžu napsat Q = jedna mínus t, krát A, plus t krát B. R je pak zlomek t podél úsečky BC, což můžeme zapsat jako jedna mínus t, krát B, plus t krát C. Q s čárkou je pak s od bodu A k bodu B, takže můžu napsat Q s čárkou jako jedna mínus s, krát A, plus s krát B a můžu napsat R s čárkou jako jedna mínus s, krát B, plus s krát C. Tento průsečík, který hledáme, P, se nachází někde na úsečce QR. Ale kde na té úsečce je? Za chvíli dokážu, že je v části s. Já tím prohlašuji, že P může být zapsáno jako jedna mínus s, krát Q, plus s krát R. Pokud je to pravda, stane se něco hezkého, protože jak se s blíží t, toto vyjádření dosahuje jedna mínus t, krát Q, plus t krát R. A to je to, co chci konec konců dokázat. Takže jediné, co zbývá ukázat, je, že průsečík může být zapsán takto. Proč by to tak mělo být? Co udělám je, že nahradím toto vyjádření pro Q, toto vyjádření pro R, a když to udělám a nově uspořádám, nechám to nové uspořádání na vás, ale výsledkem je, že P může být zapsáno následovně: jedna mínus s, krát jedna mínus t, krát A, plus s krát jedna mínus t, plus t krát jedna mínus s, krát B, plus s, t, krát C. Když to přepíšu pomocí vyjádření pro Q s čárkou, R s čárkou, zjistím, že můžu napsat P jako jedna mínus t, krát Q s čárkou, plus t krát R s čárkou. Podle tohoto vyjádření je P někde na úsečce Q s čárkou, R s čárkou, a toto vyjádření říká, že P je někde na úsečce QR. A jediný bod, který může být na obou úsečkách je průsečík. Takže náš důkaz je hotov. Zásah!